

The economy as a constraint satisfaction problem

Dhruv Sharma, Jean-Philippe Bouchaud, Marco Tarzia, Francesco Zamponi

Laboratoire de Physique-Ecole Normale Supérieure, Ecole Polytechnique

International Conference on Complex Systems
27th July 2020

Motivation - From DSGE to ABMs

- Beyond the DSGE framework
- Construct true "micro-founded" models.
- Agents are given some behavioral rules and then we simulate each agent's behavior
- Agents are only boundedly rational: no infinite horizon utility maximization.

Summary figure Schematic of the typical elements of an agent-based model

From Turrell (2016)

Constraint satisfaction problems

- Economic actors have to face all sorts of constraints: budget, leverage etc.
- Make agents' behavior depend on these constraints.
- CSPs like K-SAT, q-coloring or perceptron

Perceptron to the market

 p_3

M agents (μ) , N goods (i)

For each agent

Generic "demand" ξ_i^μ

$$\xi_i^\mu > 0$$
 sell product i

$$\xi_i^\mu < 0$$
 buy product i

For each good

Price of good i Pi

$$\frac{1}{N} \sum_{i}^{N} p_i = 1$$

Positivity $\forall i \ p_i \geq x_m$

Money exchanged

Budget

$$\frac{1}{\sqrt{N}} \sum_{i} \xi_{i}^{\mu} p_{i} \geq \sigma$$

 $\sigma < 0$ Money borrowed

 $\sigma \ge 0$ profit / savings

For standard perceptron

$$\xi_i^{\mu}$$

Input patterns

 p_i Synaptic Weights

Economic Dynamics

- 1. Update preferences heuristically:
 - If Supply > Demand, suppliers reduce production
 - If Goods are expensive, consumer reduce consumption.
- 2. Find prices that satisfy most agents by optimising a cost function
- 3. Transactions and Redistribution.
- 4. Remove agent if budget constraints violated for multiple time steps.

Rate of Bankruptcies

High Debt $\sigma < 0$

High Savings

$$\sigma \geq 0$$

Dynamically

 $\sigma < 0$

Endogenous Crisis Phase (EC)

Stable Phase (S)

High Savings

$$\sigma \geq 0$$

Unstable Phase (U)

Prices vs Supplies (Demands)

Switching between goods - Sphase

Switching between goods - U phase

What about the EC phase?

- Dynamical Switching here too.
- Bimodal supply demand distributions as well.

Why crises?

- Removal of agents fragilises the economy.
- (Surviving) Agents' profits reduce when other agents go bankrupt.
- Biased random walk leads to synchronized crisis waves. (Gualdi et al. PRL 114, 088701 (2015))

Conclusion

- Prototype ABM with budgetary constraints.
- Spontaneous speciation of goods.
- Three phases as a function of allowed debt :
 - Unstable Phase: No structure since agents can't adapt
 - Stable Phase: Speciation of goods and few bankruptcies
 - EC phase: Endogenous crises with waves of defaults.
- Debt is central to understand internal dynamics
- "Goldilocks" zone of debt where things are stable with low volatility

THANK YOU

Remaining questions

• Q1: Why switches?

• Q2: Why crises?

Remaining questions

- Q1: Why switches?
- A1: Failure of large buyer ->
 cascade of other failure ->
 rise in prices -> suppressed
 demand.
- Q2: Why crises?

