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Superfluidity of light

Abstract
In English

Quantum simulation experiments have garnered tremendous excitement over the past few years. They
provide us a tremendous tool to understand many-body quantum phenomena without resorting to
exotic computer simulations or complicated theoretical calculations. Superfluidity is one phenomenon
which has lent itself really well to such an approach with the development of polaritonic systems in
microcavity configurations. However, these experiments are usually experimentally complicated. We
devise a new method to study the quantum phenomena of superfluidity using a well understood optical
system: the propagation of light in a non-linear medium exhibiting a third-order non-linearity. Using
a pump-probe technique, we observe the Boguliobov dispersion relation for elementary excitations in
a superfluid, but with light. Conducted at room temperature, this presents the first demonstration of
an experiment demonstrating the propagation of light as a quantum fluid.

En Français

Les expériences de simulation quantique ont suscité un énorme enthousiasme au cours des dernières an-
nées. Ils nous fournissent un formidable outil pour comprendre les phénomènes quantiques à plusieurs
corps sans avoir recours à des simulations informatiques exotiques ou des calculs théoriques complexes.
Superfluidité est un phénomène qui se prête très bien à une telle approche avec le développement de sys-
tèmes polaritonic dans des configurations de microcavité. Toutefois, ces expériences sont généralement
compliquées à mettre en oeuvre. Nous élaborons une nouvelle méthode pour étudier les phénomènes
quantiques de superfluidité en utilisant un système optique bien compris: la propagation de la lu-
mière dans un milieu non-linéaire. En utilisant une technique pompe-sonde, on observe la relation
de dispersion de Boguliobov pour des excitations élémentaires dans un superfluide, mais avec la lu-
mière. Conduite à la température ambiante, cela présente la première démonstration d’une expérience
démontrant la propagation de la lumière comme un fluide quantique.
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Part I

Introduction
The phenomenon of superfluidity has a long and rich history. First discovered in liquid helium, the
superfluid character of 4He was first demonstrated independently by Allen and Misener [1] and Kapitza
[2] in 1938. Fritz London, then working at College de France was the first to figure out that the so
called λ point Tλ of 2.17K for 4He is rather close to the critical temperature for a BEC transition Tc

for an ideal Bose gas, at the same density [3]. This was the first suggestion for the link between the
phenomenon of Bose-Einstein Condensation(BEC) and superfluidity.

The link between superfluidity and BEC however, is not a simple one to unravel. It has been shown
that in superfluid Helium, only about 10% of atoms are in the condensed state. What is certain
however is, that for the presence of superfluid character, it is important that the system be bosonic.
Even 3He, which is a fermion, behaves as a superfluid, by forming a pair with another 3He atom. The
presence of a bosonic state is not the only criteria for superfluidity. Another ingredient is interactions.
Interactions make the physics more complicated but very interesting too.

A rather obvious question to ask is the following: what of the bosons that are rather ubiquitous
in nature and also in labs all over the world, photons? That would indeed be a valid question,
because photons are in effect bosons, par excellence: they are fundamental bosons, in contrast to the
composite bosons which are de rigeur in BEC physics experiments. With the advent of lasers, they
can be produced in a rather controlled manner. Can we then hope to see a superfluid state of light?

This is the question that I tried to answer over the course of this internship.

The problem with photons

Photons are simple to produce and experiment with, but they lack the important ingredient: inter-
actions. Two photons are effectively transparent to each other. Photons without interactions have
already been the subject of immense study ever since the Planck hypothesis. In fact, the photon gas
was the first Bose gas ever studied in physics, and the question of a photon BEC is subject to exciting
research conducted by Martin Weitz at Cologne [4]

So how do we make two photons interact with each other? We use matter as an intermediary between
two photons. The presence of a non-linear medium showing a χ3 non-linearity is a suitable candidate
for the job. We shall explain the choice of a χ3 material later in the report.

This heuristic definition might serve as a great tool for intuiting about photonic superfluidity. However,
we do have a formal mathematical basis upon which to talk about the superfluid character of photons,
which we shall demonstrate in a subsequent section.

The Quantum Optics team at LKB is already at the forefront in the research of polaritons, coupled
states of excitons and photons in a microcavity, to study the phenomenon of superfluid light.

Presentation of the team

The Quantum Optics group at LKB works on two topics principally: nanofibers and quantum fluids
of light. The study of quantum fluids of light is carried out via the study of polaritons generated in
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microcavities. The group, led by Alberto Bramati, has been able to demonstrate the superfluid aspects
of light via a number of different criteria: the disappearance of turbulence as the fluid undergoes a
superfluid transition and the presence of quantised vortices to name just a few examples [5], [6].

Thus, the current project is an extension of the study of quantum fluids of light via a different method:
introducing interactions via a non-linear material. For this project, hot atomic vapor of an isotopic
mixture of 85Rb and 87Rb was chosen as a non-linear material. The choice of Rubidium (Rb) vapor
shall be discussed in a subsequent section.

Is light really superfluid?

When we mention that light shows superfluid character, we shall mean it in a rather specific context.
This context shall be detailed over the course of the report. It is useful to look at this study from the
viewpoint of quantum simulation.

The idea behind quantum simulation comes from Richard Feynman who suggested that rather than
trying to simulate in silico many-body quantum systems, it would be better to find an analogous
physical system which could simulate the real system. Today, the project of quantum simulation is a
burgeoning one. We can now simulate in the lab anything from gauge fields to acoustic black holes
[7], [8]

Thus the experiment conducted over the course of the internship has a dual purpose:

1. to possibly discover unseen effects of superfluidity

2. to provide a new set of tools and a new vocabulary for experimental physicists in quantum optics
to study non-linear optics phenomena.

More generally, quantum simulation provides a physically meaningful way of finding analogies between
physical systems which a priori don’t seem to be related in any way. Furthermore, it leads to a high
degree of cooperation between physicists of different domains.

Plan of the report

The report is structured in the following manner: we begin by a thorough theoretical discussion of the
phenomena at hand. After a brief presentation of superfluidity, we present details of non-linear optical
effects which are at the heart of the experiment. We finish our theoretical excursion by detailing out
the analogy between classical superfluids and optical superfluids. The theoretical context having been
established, we present the experimental details. We explain how we seek to demonstrate the superfluid
character of light. Certain experimental techniques are presented. Non-linear media are rich because
of the diversity of non-linear effects, such as self-defocussing and degenerate 4-wave mixing. These
non-linear effects were present in the experiment and we discuss how we correct for them. We explain
how we ascertained the relevant parameters of the experiment. In between the theoretical excursion
and the experimental adventure, we digress to talk about the interplay between category theory and
quantum simulation. Next, we present the experimental results, detailing the steps in data acquisition
and data treatment. We conclude by resuming the results obtained and discuss possibilities of future
experiments. Relevant technical details are to be found in the appendices.
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Part II

Theoretical Background
We begin by giving an overview of the theoretical principles underlying the experiment. This section
is planned as follows: we begin by describing the phenomenon that is superfluidity. We derive the
Gross-Pitaevskii equation which describes the evolution of the wavefunction defining the superfluid
state. We then present the derivation of the spectrum of weak excitation in a superfluid using the
Boguliobov formalism.

In the next subsection, we present the required theoretical formalism of non-linear optics. We begin
by presenting the two-level model. This model presents a simple way to understand resonant non-
linearities of the kind that were used in our experiment. We then describe the propagation of light in
a non-linear material. We also discuss the characteristics of such resonant non-linearities.

To end this section, we detail the analogy between the Gross-Pitaevskii equation (GPE) for superfluids
and the Non-Linear Schrodinger equation for light propagation (NLSE). We discuss the analogous
nature of various parameters in the two equations.

1
SUPERFLUIDITY IN CONDENSED MATTER PHYSICS

The phenomenon of superfluidity is a fascinating one. Discovered in 1937 in 4He, it is one of the many
macroscopic quantum phenomena that have been the subject of rigorous study over the past 50 years.
The remarkable characteristics of superfluidity are zero viscosity beyond some critical temperature and
the formation of quantized vortices. We shall not enter into the details of this singularly interesting
phenomenon. We shall concentrate on some basic theoretical aspects concerning the dynamics of a
superfluid.

1.1 Gross-Pitaevskii Equation

Superfluidity is a macroscopic quantum phenomena i.e. it is a many-body quantum effect. For such
a system, the dynamics of the system are encoded in the wavefunction Ψ of the whole system, rather
than any single particle. For superfluids and Bose-Einstein condensates, the dynamics are governed
by the Gross-Pitaevskii equation, which is one example of the broader class of Non-Linear Schrodinger
Equations.

i~
∂

∂t
Ψ0(r, t) = −~2∇2

2m Ψ0(r, t) + VextΨ0(r, t) + g|Ψ0(r, t)|2Ψ0(r, t). (1)
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Here Ψ0(r, t) is the order parameter, g is the interaction constant governing the interaction between
particles in the system, and Vext is the external potenial. The order parameter is a term reserved
for the quantity that undergoes a phase transition in condensed matter physics. Using the Gross-
Pitaevskii equation, we can understand a whole host of effects such as quantized vortices, formation
of solitons and the creation of second sound [9]

1.2 Boguliobov Excitations

For what concerns this project, we shall concentrate not on the complex dynamics of the GPE, but
on probing the small amplitude excitations present in a superfluid. Our eventual aim is to discover
the dispersion relation which governs these excitations.

To start off, we can write these low amplitude excitations as a small perturbation on top of the
superfluid state:

Ψ0(r, t) = [Ψ0(r) + θ(r, t)] e−iµt/~. (2)

where µ is the chemical potential of the superfluid.

For θ(r, t), we are interested in solutions which take the form:

θ(r, t) =
∑
i

[
ui(r)e−iωit + v∗i eiωit

]
. (3)

We can inject this particular form of θ(r, t) into the GPE. Solving for ui and vi will then provide us the
eigenfrequencies of the the normal modes of the system. In general, such solutions require numerical
techniques. An analytic solution can be obtained by searching for elementary excitations around the
ground state of the gas, i.e. Vext = 0. Under this assumption, we find that Ψ0 is inderpendent of r
and µ = gn. Ψ0 can then be chosen to be real and we take Ψ0 =

√
n. We thus find that u(r), v(r)

are of the form u(r) = ueikr, v(r) = veikr.

We then obtain a set of coupled equations

~ωu = ~2k2

2m u+ gn(u+ v), (4a)

−~ωv = ~2k2

2m v + gn(u+ v), (4b)

which upon solving gives:

(~ω)2 =
(~2k2

2m

)2
+ ~2k2

m
gn. (5)

This is the famous Boguliobov dispersion relation for elementary excitations in a superfluid. The
Boguliobov dispersion relation is characterized by the presence of two different regimes
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p

0(
p)

p2=2m

p2=2m + mc2

cp

Figure 1: The Boguliobov dispersion relation for elementary excitations of a superfluid. There are two regimes:
the linear phononic dispersion (shown in black) and the quadratic dispersion in red. The single particle dispersion
is different from the standard dispersion relation (shown in dashed green) with the added term mc2.

1. Linear Dispersion: For small momenta i.e. ~k � mc, with c =
√
gn/m, we have the relation

~ω = ~kc = ~k
√
gn/m, (6a)

ε(p) = cp. (6b)

We thus see that long wavelength excitations of the fluid are sound waves. Thus these excitations
are phononic in nature.

2. Quadratic Dispersion: For large momenta i.e ~k � mc, we have the free particle dispersion
relation

~ω = ~2k2

2m + gn, (7a)

ε(p) = p2

2m +mc2. (7b)

The transition between these two regimes takes place when ~k ∼ mc. By writing p = ~
ξ , we can define

a characteristic interaction length in the system as:

ξ =
√

~2

2mgn = 1√
2

~
mc

. (8)
.

We remark also that ξ is the length scale at which the kinetic energy
p2

2m = ~2

ξ2 = mc2. (9)

Having considered the basic concepts underlying the dynamics of a superfluid, we now turn to the
propagation of light and unravel the analogy with what we have just seen.
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2
NON-LINEAR OPTICS

Let us begin with a simple working definition for non-linear optics phenomena. Non-linear optics can
be thought of the study of phenomena in which the optical parameters of the system like the refractive
index and polarization depend non-linearly on the electric field. This leads to phenomena like second
harmonic generation, three-wave and four-wave mixing and self-focusing.

For what concerns us, we shall concentrate on the non-linear behavior of the refractive index.

2.1 Propagation of light in non-linear material

In the absence of sources, the equation of propagation of light is given by:

∇2E − µ0ε
∂2E

∂t2
= 0, ε = ε(x, y, z), (10)

where ε and µ0 are the permittivity and permeability of respectively. Here ε is assumed to be a
spatially varying function. We consider a particular class of electric fields E which propagate along
the z-axis and envelope itself is assumed to be complex. Thus,

E(x, y, z, t) = Ee(x, y, z)ei(ω0t−k0z), (11)

where Ee denotes the envelope of the electric field.

We then inject this form for the electric field into (10) to get

∇2
⊥Ee + ∂2Ee

∂z2 − 2ik0
∂Ee
∂z
− (k2

0 − µ0εω
2
0)Ee = 0. (12)

where∇2
⊥ denotes the laplacian taken in the x−y plane, i.e. plane transverse to the axis of propagation.

We now make the paraxial approximation : we assume that Ee is a slowly varying function of z such
that

∣∣∣∣∂Ee∂z

∣∣∣∣� k0Ee and
∣∣∣∣∂2Ee
∂z2

∣∣∣∣� k0

∣∣∣∣∂Ee∂z

∣∣∣∣, (13)

implying that within one wavelength of the propagation distance along the z-axis, the change in Ee is
much smaller than the electric field itself. This leads to some simplification in (12). We then get

∇2
⊥Ee − 2ik0

∂Ee
∂z
− (k2

0 − µ0εω
2
0)Ee = 0. (14)
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This equation is known as the Helmholtz Equation in optics [10]. We now write the term µ0εω
2
0 in the

following manner:

µ0εω
2
0 = µ0ε0εr(1 + ∆ε)ω2

0 = k2
0 + k2

0∆ε, (15a)
k2

0 − µ0εω
2
0 = −k2

0∆ε, (15b)

where εr is the relative permittivity and we have assumed that there is some small contribution to
εr through its dependence on the electric field. ∆ε is itself a function of the transverse coordinates
∆ε = ∆ε(x, y) Through εr, we can now extract the expression for the refractive index n.

n(x, y) = n0(1 + ∆n(x, y)) =
√
εr(1 + ∆ε) (16a)

≈
√
εr +

√
εr
2 ∆ε, (16b)

−k2
0∆ε = −2k2

0∆n. (16c)

Putting the pieces together, we get the following equation, known as the paraxial propagation equation.
It is also known as the Non-linear Schrodinger equation for Light. The significance of this nomenclature
will become clearer in subsequent sections.

∂E

∂z
= i

2k∇
2
⊥E − ik∆nE. (17)

The refractive index n can then be written as the sum of two terms: a linear term which is independent
of the incident electric field, and a non-linear term which characterizes the dependence on the electric
field. Thus, the refractive index n can then be written as :

n = n0 + n2f(E). (18)

We shall elucidate the f(E) in the subsequent sections. n2 is usually called second-order index of
refraction. In simple terms n2 gives the rate at which the refractive index changes with respect to a
change in the incident electric field.

2.2 Non-linear refractive index

The interaction of a non-linear material with an incident beam of light can be described in terms of
the non-linear polarizations. Polarization P describes how a material responds to an applied electric
field on the one hand, and the way the material influences the electric field. The response of the
system to a change in the electric field can be quantified via a quantity known as the susceptibility.
In more general terms, if we consider a change in the electric field as a fluctuation and the subsequent
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change in the polarization as a response to the fluctuation, then the susceptibility written as χ gives
the coupling between the fluctuation and the response i.e.

P = ε0χE. (19)

The susceptibility χ is related to the permittivity via the Clausius-Mosotti relation. We can write :

χ = εr − 1. (20)

We can now give a more precise definition of what constitutes a non-linear material: a non-linear
material is such that the susceptibility χ is not a constant (or some trivial linear mapping between P
and E). In general, we can write the polarization as a Taylor expansion in the electric field as:

P = P0 + ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + · · · (21)

Here χ(1) is known as the linear susceptibility (the kinds we are accustomed to in standard courses in
electromagnetism). Higher order terms are known as second-order, third-order or n-order susceptibil-
ities. For isotropic mediums, the susceptibility terms are complex numbers. However, for anisotropic
materials, the higher order susceptibilities are usually (n− 1)-order rank tensors. This tensorial char-
acter takes into the account the fact that a change in the electric field in a particular direction can
engender a response in a different direction. Thus, in general χ is a tensor.

For centro-symmetric materials, there is no second-order susceptibility term [10][11].

Centro-symmetric materials

For centrosymmetric materials, we can write the polarization as :

P : (x, y, z)→ (−x,−y,−z). (22)

Suppose that the polarization of such a material can be written as :

Pi = AijEj +BijkEjk. (23)

Under the transformation (22), we get that (since P and E are vectors)

Pi → −Pi, Ei → −Ei. (24)

For centrosymmetric crystals, the constants A, B are constant under the transformation (22).

Aij → Aij , Bijk → Bijk. (25)

It is important to note that there is no sign change for B. In other terms, under a centrosymmet-
ric transformation, we get back the same material and the material constants, including tensorial
quantities such as B remain the same.
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Finally, when we apply the transformation (22) to the polarization, we get

− Pi = −AijEj +BijkEjEk. (26)

Thus, the only way in which (24) can be satisfied is if B = 0. We conclude that only odd powers of E
can be present in the expression for non-linear polarization. Thus the lowest non-linear term for the
polarization is cubic in E.

We can thus write the non-linear polarization as

PNL(ω) = 3ε0χ(3)(ω)|E(ω)|2E(ω), (27)

where the factor 3 comes about by taking into account the various effects such as sum-frequency and
difference-frequency generation [11].

Thus the total polarization P is given by

PTOT = ε0χ
(1)E(ω) + 3ε0χ(3)|E(ω)|2E(ω) ≡ ε0χeffE(ω), (28)

where χeff = χ(1) +3ε0χ(3)|E(ω)|2. We can now write the function f(E) that was left unstated in (18).

n2 = εr = χeff . (29)

Writing the f(E) in terms of the time averaged value of the electric field and assuming f(E) to be
linear in E we get that

f(E) = f(〈E〉) = f(2|E(ω)|2) = 2f(|E(ω)|2). (30)

We find thus

[n0 + 2f(|E(ω)|2)]2 = 1 + χ(1) + 3ε0χ(3)|E(ω)|2, (31a)
n2

0 + 4n0n2f(|E(ω)|2) = (1 + χ(1)) + 3ε0χ(3)|E(ω)|2. (31b)

We thus identify that f(|E(ω)|2) = |E(ω)|2. Finally, we derive the relations between the susceptibilities
and the refractive indices as:

n0 =
√

1 + χ(1),

n2 = 3χ(3)

4n0
.

(32)

(33)

Usually in optics experiments, we measure not the amplitude of the electric fields themselves but the
intensity of the incident light. Here the intensity is defined as the average power per unit area. The
intensity denoted by I can be written in terms of the electric field as
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I = 2n0ε0c|E(ω)|2. (34)

We thus write n = n0 + n2I, where n0 and n2 are written as:

n0 =
√

1 + χ(1),

n2 = 3χ(3)

4n2
0ε0c

.

(35)

(36)

2.3 Resonant non-linearities

After having established the theoretical basis for the non-linear refractive index, we shall consider non-
linearities in an atomic medium. Such non-linearities are generated by the interaction of an incident
electric field which is slightly detuned from an atomic resonance. Since the experiment was conducted
with an atomic vapor as a non-linear medium, we will give a complete theoretical description of the
such non-linearities.

2.3.1 • Two-level model

We begin with a very simple but powerful model to describe the interaction between atoms and light:
the two-level atom. As Bill Phillips has said

There are no two-level atoms, and rubidium is not one of them

it is a valid model to understand atom-light interactions when the incident light is not highly detuned
from resonance.

|a〉

|b〉

h̄(ωa-ωb) Γ = 1
T1

Figure 2: Two level atom showing transition between states |a〉 and |b〉. The difference in energy between the
two levels is ~(ωa − ωb). The state |b〉 decays into the state |a〉 with decay constant Γ.
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We take a two level atomic system with states |a〉 and |b〉. We shall denote the energy difference
between these two levels as ~(ωb − ωa). We also allow the level |b〉 to decay into the level |a〉 in some
characteristic time T1 or at the rate Γba = 1

T1
. Furthermore, the system is assumed to be closed i.e.

the level |b〉 is not allowed to decay into some other level.

The interaction with the external electric field is V (t), which written in the Coulomb gauge is the
product of a quantum mechanical dipole operator µ̂ and the electric field Ẽ taken to be complex.

V̂ = −µ̂Ẽ(t) = −µ̂(Ee−iωt + E∗eiωt), (37)
Vba = −µba(Ee−iωt + E∗eiωt). (38)

The dynamics of such a two level system are expressed in terms of the density matrix for the system.

ρ̂ =
[
ρaa ρab
ρba ρbb

]
. (39)

The evolution of the density matrix can be written in terms of the Heisenberg equation.

i~
dρ̂
dt = −

[
ρ̂, Ĥ

]
, (40)

where Ĥ = Ĥ0 + V̂ :

Ĥ =
[
~ωa Vab
Vba ~ωb

]
. (41)

From (40), we get:

dρij
dt = − i

~

[
Ĥ, ρ̂

]
ij

= − i
~
∑
k

(Hikρkj − ρikHkj). (42)

We write the transition frequency between the states |a〉 and |b〉 as ωab. Using (37), we get for each
of the terms in the density matrix:

ρ̇ba = −i(ωbaρba) + i

~
Vba(ρbb − ρaa), (43a)

ρ̇bb = i

~
(Vbaρab − ρbaVab), (43b)

ρ̇aa = i

~
(Vabρba − ρabVba). (43c)

We observe that ρ̇bb + ρ̇aa = 0 implying that

ρaa + ρbb = 1, (44)
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since the diagonal elements of ρ̂ represent occupation probabilities of states |a〉 and |b〉. Furthermore,
since ρ̂ is hermitian, ρab = ρ∗ba, we need only write the equation for ρba.

The solution of (43) provide a complete description of a two-level system without any relaxation
processes. However, for a two level system which can spontaneously decay from |b〉 to |b〉, we need to
add relaxation terms to these equations. This is done phenomenogically by adding relaxation terms
proportional to the decay constant Γba. We obtain thus,

d
dt(ρbb − ρaa) = −Γba(ρbb − ρaa + 1)− 2i

~
(Vbaρab − ρbaVab), (45a)

d
dtρba = −(iωab + Γba

2 )ρba + i

~
Vba(ρbb − ρaa), (45b)

where we write one equation for the population difference ρbb − ρaa.

In general, equations (45) are not solvable. We thus make the rotating-wave approximation such that
(37) as [11]

Vba = −µbaEe−iωt. (46)

Under this approximation the density matrix equations become

d
dtρba = −

(
iωba + Γba

2

)
ρba + i

~
µbaEe−iωt(ρbb − ρaa), (47a)

d
dt(ρbb − ρaa) = −Γba(ρbb − ρaa + 1) + 2i

~
(µbaEe−iωtρab − µabE∗eiωtρba). (47b)

In steady-state, with the condition ρaa + ρbb = 1, the solutions to (47) are

ρbb − ρaa = − 1 +
[
(ω − ωba)Γ2

ba/4
]

1 + (ω − ωba)2 Γ2
ba
4 + 2

~2 |µba|2|E|2Γ2
ba

, (48)

ρba = µbaEeiωt(ρbb − ρaa)
~(ω − ωba + iΓba

2 )
. (49)

2.3.2 • Susceptibility

Using the solutions (48), we can now define and calculate the polarization which is defined as the
dipole moment per unit volume. Using the dipole moment operator µ̂, we have

P̃ (t) = N〈µ〉 = N(µabρba + µbaρab). (50)

where N is the number of density of atoms.

From (19), we get for the susceptibility
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χ = N |µba|2(ρbb − ρaa)
ε0~(ω − ωba + iΓba/2) . (51)

Injecting the solution for (ρbb − ρaa) from (48), we get,

χ = −
N |µba|2(ω − ωba − iΓba/2) Γ2

ba
4ε0~

1 + (ω − ωba)2Γ2
ba/4 + 2Γ2

ba
~2 |µba|2|E|2

. (52)

To make the expression more compact, we introduce the terms

1. δ = ω − ωba, which denotes the detuning

2. ΩR = |µba||E|/~, which denotes the Rabi frequency of the two level system

3. Γ = Γba, which denotes the relaxation rate from state |b〉 to |a〉

With this notation and after some simplification we get for χ

χ =
[
−4N |µba|

ΩR

Eε0Γ2

]
δ − iΓ/2

1 + 4δ2

Γ2 + 8Ω2
R

Γ2

. (53)

To be able to extract the non-linear refractive index from this expression for χ, we will perform an
expansion of (53) in |E|2. To this end, we make the following substitutions:

C =
[
−4N |µba|

ΩR

Eε0Γ2

]
, (54a)

8Ω2
R

Γ2 = |E|2

|Es|2
, (54b)

|Es|2 = Γ2~2

8|µba|2
. (54c)

We then have for χ,

χ = C

(
δ − iΓ/2

1 + 4δ2

Γ2 + |E|2
|Es|2

)
. (55)

A small comment on the significance of the term |Es|2: We observe from the expression that for an
optical field of |Es|2, the value of the susceptibility falls to half its maximum value.

We now perform a Taylor expansion in |E|2/|Es|2, to get

χ = C

(
δ − iΓ/2
1 + 4δ2

Γ2

)(
1− 1

1 + 4δ2

Γ2

|E|2

|Es|2
)
. (56)
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We now identify the first-order and third-order susceptibility, from the above expression

χ(1) = C

(
δ − iΓ/2
1 + 4δ2

Γ2

)
, (57a)

χ(3) = C

3
(δ − iΓ/2)
(1 + 4δ2

Γ2 )2
1
|Es|2

. (57b)

Since we are concerned with the non-linear refractive index, we shall concentrate on the expression
for χ(3). Replacing the value of |Es|2 above and rearranging the terms, we get

χ(3) = 32Nµ4
ba

3ε0~3
δ/Γ4

(1 + 4δ2

Γ2 )2
. (58)

The real part of χ(3) corresponds to the non-linear refractive index whilst the imaginary part corre-
sponds to the absoprtion coefficient α. From (35), we get for n2

n2 = 8Nµ4
ba

ε20cn
2
0~3

δ/Γ4

(1 + 4δ2

Γ2 )2
. (59)

Furthermore, for highly detuned systems such that δ � Γ, we have the expression:

n2 ≈
N |µba|4

2ε20n2
0~3

1
δ3 . (60)

We have thus been able to give a microscopic expression for the non-linear refractive index using a
very simple model of the two-level system. We shall use this expression in what follows to better
understand the atomic system that was used as well as calibrate the experiment performed to the
optimal value of n2.

Before we get into the experimental details, we shall spend some time on elucidating the relation
between superfluidity and the propagation of light in a non-linear medium.
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3
SUPERFLUIDITY OF LIGHT

Let us recapitulate the two equations which govern the dynamics of superfluids (without an external
potential) on one hand and the propagation of light in a non-linear medium on the other hand.

i~
∂

∂t
Ψ0(r, t) = −~2∇2

2m Ψ0(r, t) + g|Ψ0(r, t)|2Ψ0(r, t), (61a)

∂E

∂z
= i

2k∇
2
⊥E − ikn2|E|2E. (61b)

We remark right away that these two equations are equivalent mathematically, even though they
represent two different physical situations. The equivalence is complete if we identify the parameter
t (time) for z, and the complete laplacian ∇2 with the transverse laplacian ∇2

⊥. We then ask the
rather legitimate question: if these two equations are equivalent (upto some transformations), will the
systems they describe exhibit similar behavior?

The answer is affirmative. Let us recall the conditions required for the existence of superfluid behavior
that we introduced in the introduction. There we had remarked that we require bosons in interaction
as a requirement for superfluid phenomena. We observe for the propagation of light in a non-linear
medium that these two conditions are met: photons are bosons and the presence of matter can
serve as an intermediate for creating an effective interaction between photons. A consequence of this
effective interaction is self-defocusing, whereby a focused beam of light expands and gets defocused
as it propagates through a non-linear medium (with negative non-linearity i.e. n2 < 0). We can thus
imagine that the presence of matter enables the photons to interact in a repulsive manner. However,
we could in fact tune the interaction to have attractive interactions between the photons. This change
in regimes can be established by a judicious choice of the non-linear refractive index n2.

Figure 3: Time, in the GPE is mapped to the axis of propagation z for light. Every slice of the transverse plane
at a given value of z can be regarded as corresponding to an instant of time t for the GPE. Taken from [12].
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The equivalence between the two equations can be furthered established by an equivalence of param-
eters:

t→ z

c
, (62a)

v → c

k
∇φ, (62b)

ρ→ |E|2, (62c)

ξ → λ

2

√
1

∆n, (62d)

where v denotes the velocity of the fluid of light, ∇φ is the phase of the electric field, and ξ is the
healing length whose significance will become clearer in the next few sections.

Now that we have established the equivalence of the two systems: atomic superfluids with the dynamics
governed by the GPE on the one hand, and the propagation of light in a non-linear light on the other,
let us examine how we can experimentally verify the veracity of the equivalence, and in the process
demonstrate the existence of a fluid of light.
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Part III

Experimental Details
In this section of the report, we will examine how we can experimentally verify the existence of fluid of
light in analogy with the propagation of light in a non-linear medium with that of atomic superfluids.

4
AIM OF THE EXPERIMENT

There are many methods to demonstrate the analogy between the flow of superfluids and the propa-
gation of light in interesting geometries: at LKB, the quantum optics group has worked on a system
called exciton polaritons. These polaritons are short-lived (of the order of picoseconds) quasi-particles
created due to the interaction between photons and excitons in an optical cavity. There they have been
able to demonstrate superfluidity and the existence of quantized vortices by the injection of angular
momentum states in a polaritonic fluid of light [6].

The research on exciton polaritons is at an advanced stage. However, the aim of the experiments
conducted over the course of this internship were different: demonstration of the superfluidity of light
using atomic vapor as the non-linear medium. Since the work on atomic vapor as a potential source
for creating superfluid-like behavior is at a nascent stage, we chose a simple method to demonstrate
the unique properties of light in atomic vapor.

Thus, the aim of the experiment is to determine the spectrum of low-amplitude excitations in the
quantum fluid of light. A straight-forward way to do this is via analogy with the GPE for atomic
superfluids. We recall from (5) that the dispersion relation for low-amplitude elementary excitations
is given by

(~ω)2 =
(~2k2

2m

)2
+ ~2k2

m
gn. (63)

By the same measure and using the equivalence of parameters established in (62), we find the dispersion
relation for elementary excitations for the quantum fluid of light also follow the Boguliobov dispersion
relation:

Ω2
⊥ = c2∆nK2 + c2

4k2K
4, (64)

where c is the speed of light in vacuum. Ω⊥ corresponds to the spatial frequency (Ω⊥ is written in terms
of the temporal variable t = z

c ) and K corresponds to the wave-vector. Both K and Ω⊥ correspond to
quantities measured in the plane perpendicular to the propagation axis. We thus remark that similar
to superfluids, two regimes exist corresponding to low and high momenta excitations: linear dispersion
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corresponding to phonon-like excitations and quadratic dispersion corresponding to single-particle like
excitations.

We also define a few other terms: the transverse plane is the plane perpendicular to the propagation
axis. All quantities with transverse prefixed before them correspond to the quantities measured in the
transverse plane.

The method we use to probe the Boguliobov spectrum is the pump-probe technique

5
PUMP-PROBE TECHNIQUE

Figure 4: The pump-probe technique used in the experiment. The probe enters the incident face of the Rb cell at
an angle α. The transverse component is K sin(α). At low intensities of the background field (the pump beam),
we have very little non-linearity. The interference between the pump and probe beams under such conditions
serves as a reference. When we switch on the non-linearity, the low-amplitude excitations propagate with a
different phase velocity. This results in a shift between the reference interference pattern (in blue) and the
non-linear interference pattern (in red).

The pump-probe technique consists of creating a strong background fluid formed by an intense beam
propagating along the z-axis. Then, another beam, weaker in intensity, is interfered with the pump
beam. The probe beam enters the incident face of the medium at an angle α to the pump beam. This
provides a propagation component of the probe beam in the transverse plane. Thus the interference
between the pump and probe beam also has a transverse component which will serve as the low-
amplitude excitation for the purposes of the experiment.

The angle between the pump and the probe provides us a way to modulate the transverse wave-vector
K whilst the intensity of the background fluid provides us a means to modulate the interaction term
and thus ∆n.

However, the pump-probe technique in itself provides a way to create low amplitude excitations on
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top of the superfluid. We require another physical and measurable quantity to establish the superfluid
nature of light.

To compute this quantity, we observe that the propagation of low-amplitude excitations would be
different if the pump intensity was changed. Because the dispersion relation for the case where the
pump has low intensity and one where it has high intensity (64) are different, this difference will be
manifested in a shift in the interference pattern created by the pump and the probe beams in the two
regimes.

This shift can be calculated by a simple calculation. The shift is a consequence of the difference in
the phase velocity due to the differences in regimes depending on whether the pump has a high or low
intensity. We remark that due to the t→ z correspondence, the phase velocity which we note as vph
is dimensionless. We can calculate the phase velocity from the dispersion by :

vph = Ω⊥
cK

(65)

The dispersion relation, and the phase velocity, when the pump has low intensity is given by

ΩLP
⊥ = c

2kK
2, (66a)

vLP
ph = K

2k , (66b)

where LP stands for Low-power. We note that in the low power case, ∆n = n2I is very small and we
can safely neglect the term with ∆n in the Boguliobov relation. For the high power case, which we
note by HP, we have

ΩHP
⊥ =

√
c2∆nK2 + c2

4k2K
4, (67a)

vHP
ph = K

2k

√√√√1 + ∆n
(2k
K

)2
, (67b)

The shift can now be understood as the difference in distance covered by the low-amplitude excitations
due to the difference in phase velocities of the background fluids. This retard, or shift, can be calculated
by computing the difference in distance covered for the same amount of time. For our case, the time
is in fact z, the distance along the propagation axis. Hence, the shift can be calculated as:

∆S = (vHP
ph − vLP

ph )z. (68)

Injecting the expressions for the phase velocities in the high power and low power regimes, we get

∆S = Kz

2k


√√√√1 + ∆n

(2k
K

)2
− 1

 . (69)
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In terms of Λ, the equation for the shift is:

∆S = λ

2Λ


√√√√1 + ∆n

(2Λ
λ

)2
− 1

 (70)

The shift ∆S as a function of Λ = 2π
K is shown in figure 5

Figure 5: The variation of the shift ∆S with Λ for a non-linear medium. We identify also the healing length
ξ = 7× 10−4m.

In the graph we see that beyond the healing length, there is a change in the regime of the shift, and
the shift seems to saturate for higher values of Λ (or lower values of K). Thus for large values of
Λ, we are in the phononic dispersion regime. Since the shift ∆S serves as a proxy for the dispersion
relation for elementary excitations on top of the fluid, establishing the ∆S vs Λ curve is akin to getting
information about the dispersion relation. Furthermore, by repeating the above calculation in reverse,
we can get back the dispersion relation from the shift.

Having discussed the aim of the experiment, let us now discuss some features of the experiment.

6

DETERMINATION OF PARAMETERS

The experiment aims to demonstrate the analogy between the propagation of light in a non-linear
medium and atomic superfluidity. What sets this experiment apart from other approaches such as the
experiments with polaritons is that the experiment is conducted at room temperature. In other systems
such as exciton polaritons, sophisticated cooling techniques are required to perform the experiment.
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The non-linear material chosen for the purposes of the experiment is Rb vapor at a high temperature
usually 140◦ − 150◦ celsius. The Rb is present in its naturally abundant form i.e. as an isotopic
mixture of 85Rb and 87Rb.

Finally, we need to fix certain parameters of the experiment. From the expression of the shift (69),
we see that we see that we have two free parameters: ∆n and z, the propagation length. We chose a
Rb cell with a length of 15cm and thus for the course of the experiment, z = 15cm. ∆n on the other
hand depends on some other parameters

1. Two level system, which determines the reference for the detuning δ

2. Intensity I of the laser beam.

While the two-level system will fix the value of n2, we can scale the non-linearity ∆n by varying I.
For the two-level system, we choose the atomic resonance corresponding to F = 2→ F = 3 hyperfine
transition of the 87Rb D2 line. The transition is marked in red in figure 6. Having fixed the two-level
system, we will discuss how we can determine ∆n for this atomic system.

6.1 n2

We have already calculated the expression for n2 as a function of the detuning parameter in (59).
However, n2 depends on other factors, some of which are implicit and some of which are explicit. We
rewrite the expression for n2 for reference:

n2 = 8Nµ4
ba

ε20cn
2
0~3

δ/Γ4

(1 + 4δ2

Γ2 )2
. (71)

In this expression, n2 ∝ N , the atomic density. The atomic density in turn is a function of the
temperature T of the atomic vapor. The temperature dependence is important not just for the atomic
density but for the detuning δ as well through the Doppler Effect. We know that at some temperature
T , atomic velocities are distributed according to the Maxwell-Boltzmann distribution given by

W (v) =
√

m

2πkBT
e−

v2
2a2 , (72)

a =

√
kBT

m
,

where kB is Boltzmann’s constant. Thus for an atom moving along the axis of propagation at a speed
v, the detuning observed for this atom would be

δv = δ − kv, (73)

where k = 2π
λ is the wave-vector for the incident light. Thus, for an atomic system at temperature T ,

n2 includes contributions from all velocity classes. We thus need to sum over all velocity classes i.e.
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Figure 6: Hyperfine structure of 87Rb for the D2 line corresponding to 52S1/2 → 52P3/2 transition.

n2(v, T ) = 8N(T )µ4
ba

ε20cn
2
0~3

δv/Γ4

(1 + 4δ2
v

Γ2 )2
, (74a)

n2(T ) =
∫
n2(v, T )W (v)dv. (74b)

This integral is computed numerically. We present the variation of ∆n as a function of the detuning
δ summed over all velocity classes.

However, we remark that the curve isn’t nullified at δ = 0 but in fact at δ ≈ 1GHz. This can be
explained by taking into account the contribution of the 85Rb isotope. In effect, we remark that there
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Figure 7: Left: |∆n| is plotted as a function of δ. The temperature was 142.5◦ Celsius with a beam size of 6
mm2 and incident power of 50mW. Right: The variation of n2 as a function of δ. The curve is an odd function
of δ and for δ � 1, it falls off as 1/δ3.

is non-negligible contribution from the 85-isotope as shown in figure 8 Furthermore, we remark that
when we sum these two contributions, they nullify each other at δ ≈ 1GHz. We thus observe that even
though our line center corresponds to the 87-isotope, we still have contributions from the 85-isotope.
Moreover, since the number of 85-isotope is about 3 times as much as the 87-isotope, the contribution
from the 85-isotope helps to increase the non-linear refractive index especially for δ < 0. This is crucial
since we require a regime in which n2 < 0 for repulsive interactions between the photons.

Figure 8: We plot the contribution of the two isotopes to the total value of n2.

Now that we have obtained the variation of n2 with δ, can we choose the parameters T , δ and I
optimally? Or in other words, is the figure 7 enough for determining the optimal set of parameters
for the experiment?
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The answer is negative. In fact, we haven’t taken into account the effect of absorption on the system.
Furthermore, there is also the question of the measurement of temperature. We shall consider these
two parameters in the next few sections.

6.2 Absorption

Absorption is present in any atomic system if the incident light is close to resonance. However, for
atomic vapor, absorption can also occur for highly detuned incident light. Whence for n2 the Doppler
effect aided us in enlarging the range of possible δ, it limits us in the case of absorption. Since the
actual detuning δv experienced by an atom depends on its velocity, the absorption can occur for
systems far from resonance as well. Thus, the absorption coefficient itself is a function of the T , the
detuning δv and the atomic density N .

Thus we are faced with an optimization problem: find the optimal value of ∆n i.e. values of n2, T and
I while minimizing absorption in the system. However, all is not lost: we can use the absorption curve
to determine the effective temperature of the system. We need to obtain an effective temperature,
which is the temperature that fixes the atomic velocities. This effective temperature is not known
to us by measurement of the temperature of the cell since we measure the temperature of the Rb
cell at only one point. Using this effective temperature, we can compute the atomic density N(T )
of the system. The determination of this effective temperature proceeds by a theoretical fit to the
experimental absorption spectrum.

Figure 9: We note that the values of δ for which we have appreciable non-linearities are also those for which we
have appreciable absorption
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6.2.1 • Theoretical Model

The theoretical model for absorption in a two-level model can be written as:

α = CN(T )L(δ) ∗ N (v), (75)

where C is a constant, N is the atomic density, L(δ) is a Lorentzian profile, typical of absorption
and emission processes in two-level systems, and N (v) is the Gaussian distribution corresponding to
the Maxwell-Boltzmann distribution for atomic velocities. Here ∗ denotes the convolution operation.
We can simplify the expression for the absorption profile by using the Fourier transform, computing
the relevant quantities and then performing the inverse Fourier transform [13] We get finally for the
absorption profile, sans other prefactors:

Voigt =
√
π

2 e
1
4 (u−i2y)2

(
Erfc

[
u

2 − iy
]

+ ei2uyErfc
[
u

2 + iy

])
, (76)

where Voigt is the voigt profile, a typical absorption profile for atomic systems. Erfc is the compli-
mentary error function written as:

Erfc(z) = 2√
π

∫ ∞
z

e−t2dt (77)

u and y are dimensionless parameters expressed in terms of the detuning and the atomic velocity.

u = Γ
ka
, (78a)

y = δ

ka
, (78b)

where a is the width of the Maxwell-Boltzmann distribution for a given temperature. The width of
the Voigt profile is characterized by the parameter u, which is the ratio of the widths of the Lorentzian
and Gaussian profiles. The prefactor C depends on other parameters of the atomic system, namely
the line strength, the dipole moment of the two-level system considered and the degeneracy of the
ground state of the respective isotope. The complete expression for the absorption coefficient is given
as:

α(δ) = kC2
Fd

2N
1

2(2I + 1)
1
~ε0

Voigt
ka

, (79)

where d is the dipole moment, C2
F is the line strength of the particular transition and 2(2I + 1) is the

degeneracy of the ground state of the isotope.
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6.2.2 • Fitting procedure

The Voigt profile is the same for all hyper-fine transitions for a given isotope. The height of the Voigt
profile in turn depends on the prefactors. Thus for any transition, we can compute the profile using
(76), center it on the frequency corresponding to the transition and finally multiply with the corre-
sponding prefactors to compute the theoretical absorption profile. The fit procedure then proceeds in
the following fashion:

1. Select the range of detunings to take into account. For all absorption spectra, we took detunings
from -9 GHz to 10 GHz. The center was always taken to be the F = 2 → F = 3 transition of
the 87Rb D2 line.

2. Compute the profiles for the two isotopes separately. The two isotopes have slightly different
decay constants and different dipole moments.

3. For each profile, we sum the contributions from each of the hyperfine transitions. The hyper-
fine transitions are different in only their relative transition strengths (the term C2

F in (79)).
Furthermore, since the incident light is linearly polarized, all three transitions are accessible.

4. The transitions are centered on the respective resonance centers.

5. The absorption spectra is then computed from Beer’s law as :

I(z) = e−αz, (80)

where z is the length of the medium. In our experiment, the length of the medium corresponds
to the length of the Rb cell.

6.3 Temperature T

Fitting a the theoretical Voigt profile to an experimental absorption curve is a non-linear optimisation
problem. To ease this process, I designed an interactive application which runs on the browser and runs
on all operating systems. This application allows us to fit many parameters such as the temperature
T , and the frequency of the line centers (since there is some uncertainty about the exact values of these
frequencies in the experiment). There is another panel that allows us to accurately fix the reference
for the detuning.

The important parameter which is fit to the experimental curve is the temperature of the cell. As
mentioned earlier, we measure the temperature of the cell at only one point of the cell and thus
aren’t aware of the effective temperature in the cell. The theoretical fit provides us this effective
temperature. We also extract a calibration curve for the effective temperature as a function of the
recorded temperature. We clarify however that the calibration is valid for the particular cell in use
and cannot be extrapolated to other Rb cells.

The calibration curve was determined with incident intensities less than the saturation intensity of
the two-level systems. The theoretical model using the voigt profile in (76) is valid only for I < Isat.
Isat is defined as the optical intensity required to reduce the gain of an optical medium to half of
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Figure 10: Interface for the fitting application

its maximum value. We can track the error between the experimental and the theoretical fit as a
function of the incident intensity as shown in figure 12. We observe that for intensities less than Isat,
the predicted temperature is higher than that for intensities greater than Isat. We conclude thus that
the value of the effective temperature is valid for I < Isat.

Computing N(T )

The computation of the atomic density is a straightforward using the Ideal gas law, where the pressure
taken is the vapor pressure of Rb vapor in its liquid state. The calculation of N(T ) follows two steps:

1. Computing the vapor pressure at a given temperature (measured in Kelvin) (in our case the
effective temperature) [13]

log10p = 15.88253− 4529.635
T

+ 0.00058663T − 2.99138log10T. (81)

2. Compute the atomic density
N = 133.323p

kBT
. (82)

Choosing the parameters

Once we have taken into account the absorption and its variation with δ, we can now turn our
attention to choosing the values of the parameters to maximize the value of n2. To this end, we
trace out the variation of ∆n (for a given intensity I) against the transmission through the Rb cell.
The transmission is traced out for δ < 0, since this guarantees a negative value of n2. The choice of
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Figure 11: Calibration curve for the temperature. For each measured temperature, five absorption spectra were
taken. For all absorption spectra, I < Isat. A best-fit line of the form f = mx is also plotted. This is the
calibration line that is used to compute the effective temperature from the recorded temperature.

parameters is done by choosing the temperature which exhibits the maximum value of ∆n for a fixed
value of the transmission. The value of δ is then chosen for this value of ∆n. Care is taken to trace
out the ∆n curve for the effective temperature as opposed to the recorded temperature. As presented
in the figure 13, we chose a value of the transmission equal to 0.7 which fixes the value of ∆n for the
experiment at a given δ. We can still increase the value of ∆n by increasing the intensity since ∆n
scales linearly with the intensity I.

7
EXPERIMENTAL SETUP

Having discussed the determination of the various parameters, we now turn our attention to the
experimental setup. The experimental setup is presented below.

We can classify the different parts of the setup into three different sections:

1. Interferometer to prepare the pump and probe beams

2. Propagation through the Rb cell

3. Imaging
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Figure 12: The densities predicted from the fit as a function of the incident intensity. We can observe the
influence of the incident intensity on the error committed while fitting the experimental curve, with the least
error being committed for I < Isat.

Figure 13: To choose an optimal set of parameters, we choose first the value of the temperature measured which
gives us the maximum ∆n for a chosen value of the transmission. Here the transmission has been fixed to 0.7.
The temperatures are recorded temperatures. The values of ∆n is for the effective temperature.
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Figure 14: The complete optical setup. The part highlighted in red shows the interferometer

The section before the interferometer serves to prepare the beam before it reaches the interferometer.
Using polarising beam-splitters and half wave-plates we can modulate the intensity of the beam which
enters the interferometer. We shall consider each of these sections one by one.

Interferometer

Figure 15: The interferometer
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The interferometer serves to create the pump and probe beams. We create the pump and probe beams
by separating a single beam using a non-polarizing beam splitter(NPBS). These beam splitters split
the two beams into two coherent beams: one which carries 70% of the incident power and the other
carrying 30% of the incident power. The other NPBS also splits the beam in the same manner. At
the exit from the second beam-splitter, the low-intensity arm carries 9% of the initial energy, while
the high-intensity arm carries 49% of the incident energy. The high-intensity arm serves as the pump
beam while the other arm serves as the probe beam. On the probe arm, we also place a polarizing
beam-splitter and a half wave-plate to modulate the intensity of the probe beam further. Since we
require changing the angle at which the probe enters the Rb cell, we place a movable mirror, which
can be controlled in three directions: one for translation along the optical table, one for changing the
height of the beam (measured from the surface of the optical table) and the last one to modulate the
angle of the probe beam. We place a shutter on the probe arm, allowing us to block the probe beam.
A beam-blocker is placed on the pump arm as well to enable us to block the pump beam for purposes
of aligning the probe beam, if required. The two beams are then recombined further at the second
NPBS, which further reduces the intensity of the probe beam. We recall that we want to measure the
dispersion relation of the low-amplitude excitations of the superfluid. Thus, the intensity of the probe
beam is atmost 10% of that of the pump beam.

Figure 16: The movable mirror has three degrees of freedom: translation, angle and height. These three degress
of freedom allow us to change the angle α between the pump and probe beams

Propagation through the cell

The pump and probe beams having interfered at the second NPBS pass through a system of two
cylindrical lenses. These lenses serve to focus the beam along the y−axis while having a Gaussian
distribution along the x−axis. Once transformed into an elliptical shape the two beams are then
incident on the Rb cell. The Rb cell is 15 cm long and is heated uniformly along its length. We place
a filter just before the cell to reduce the intensity of the incident beams. This serves to create the
low-power regime for the background fluid.

Imaging
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After propagation, the two beams are imaged on camera 2 which serves to image the plane at the exit
face of the cell. There is another Camera used to image the Fourier Plane. We shall return to this
part of the setup in a subsequent section.

8

EXPERIMENTAL PROTOCOL

The experiment proceeds through the following steps:

1. We fix a particular angle α which fixes the transverse momentum for the probe beam.

2. For this angle, we image the exit face of the Rb cell in the following configurations:

(a) The pump beam alone in high power regime. This is achieved by removing the filter before
the cell. We label this image High-Power Background

(b) The pump beam alone in the low power regime. This is achieved by inserting the filter
before the cell. We label this image Low-Power Background

(c) The pump and probe beams with the filter removed. We label this image High-Power
Fringes

(d) The pump and probe beams with the filter added. We label this image Low-Power
Fringes

3. The actual signal is extracted by subtracting the background from the images obtained in steps
(c) and (d) above i.e

High-Power Signal = High-Power Fringes - High-Power Background
Low-Power Signal = Low-Power Fringes - Low-Power Background

4. The low-power signal serves as the reference with respect to which we can measure the shift
induced due to the non-linear propagation in the material. The terms low-power and high-
power are used to distinguish the configurations of the pump beam: with the filter present, the
pump beam intensity is attenuated (thus low-power), whilst with the filter absent, the pump
beam intensity is undisturbed (thus high-power).

In figure 17, we can see the difference between the low power and high power regimes. In the high
power regime, we see the influence of the non-linear medium: the beam becomes defocussed. This
self-defocusing can also be observed in the interference fringes that are shown in 18.
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Figure 17: The pump beam imaged in the low power and high power regimes. LP denotes Low power, HP denotes
High Power. In the lower panel, we can see the influence of the non-linearity: the beam becomes defocussed.
This is a manifestation of n2 < 0 leading to effective repulsive interactions between photons. [11]

9

DEGENERATE FOUR-WAVE MIXING

We can now extract the signal of the shift by integrating over some section of the 18. After smoothing
over the signal, we get the image shown in the right panel of figure 18 What is remarkable is the
absence of the shift. We observe that for the two regimes, the interference fringes are superimposed
perfectly upon each other. To understand what is happening, we need to take into account a non-linear
effect that we have neglected: Four-Wave Mixing.

Four wave mixing is a phenomenon which occurs in materials exhibiting χ(3) non-linearity. It occurs
if there are three beams of light at different (or the same) frequencies propgating within the medium.
Due to the interaction between the non-linear material and the three beams of light, a fourth beam is
generated whose frequency is a linear combination of the other three frequencies. In other words, if
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Figure 18: Left: Interference fringes with the background removed. The x and y axes are measured in pixels.
Right: ntegrated signal of the interference fringes. We choose a small region usually between 300-400 pixels
from the signal in figure 18 and integrate to get the profile along the x− axis. The upper panel is the integrated
signal, the lower panel is the normalized and smoothed version of the integrated profile.

ν1 ν2, and ν3 are three different frequencies, the fourth beam can have a frequency

ν4 = ν1 + ν2 − ν3. (83)

However, an important criteria needs to be met for the presence of this phenomena in the material:
phase-matching. In other words, it doesnt suffice that the process be favorable with respect to energy
conservation, it needs to be favorable with respect to momentum conservation as well. In other words,
the process is most efficient when

∆ = ~k1 + ~k2 − ~k3, (84)

is minimal. In our experiment, we are concerned with degenerate four-wave mixing i.e. two photons
from the pump beam interact with one photon from the probe beam to create a photon which we call
the conjugate photon. The beam thus generated is called the conjugate beam. As we can see from
figure 19, the efficiency of the four-wave mixing process depends on the angle between the pump and
probe beams. To experimentally verify the presence of this conjugate beam, we image the Fourier
transform of the exit face of the cell.

Imaging-2

The Fourier transform of the exit face can be computed by placing a lens at a distance of one focal
length away. Then the Fourier transformed image will be formed at one focal length beyond the lens.
In our setup, this is the lens which is placed right after the cell. We then place an objective microscope
to magnify this Fourier transformed image, which is then imaged on camera 2. In figure 21, we can
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Figure 19: Phase Matching Condition for degenerate four-wave mixing. ~k1 is the wave-vector for the pump
beam, ~k2 for the probe beam and ~k3 for the conjugate beam. We remark the importance of the angle between
the pump and probe beams: if the angle is too large, the conjugate beam is not perfectly phase-matched and
thus the four-wave mixing process isn’t efficient. However, for smaller angles, phase-matching is easier and the
conjugate beam has an appreciable intensity.

Figure 20: We recall the optical setup with the section on imaging highlighted in yellow.

observe the generation of the conjugate beam. We also observe that the conjugate beam is generated
symmetrically with respect to the probe beam. The generation of the conjugate beam explains the
absence of the shift which was observed in figure 18.

The reason is rather simple: for small angles, the process of the generation of the conjugate beam is
very efficient. If we consider the interference of the pump beam with the conjugate beam, then we
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expect the presence of a shift between the reference pattern and the high-power pattern. However, the
conjugate beam is generated symmetrically to the probe beam. This implies that if the probe beam
is at an angle α to the pump, the conjugate beam is generated at an angle −α to the pump. Thus if
the shift due to the presence of the probe beam is towards the right, the shift due to the conjugate
beam will be towards the left. The result will be a net zero shift as observed in figure 18.

Figure 21: Left:On the Fourier plane, we have separated the pump, probe and conjugate beams. We remark the
symmetric generation of the conjugate beam. Furthermore, the intensity of the conjugate beam is comparable to
that of the probe beam. Right:The razor edge completely covers the right part of the Fourier Plane masking the
conjugate beam.

To observe the shift, we need to filter out the conjugate beam. To this end, we use a razor edge,
as shown in the optical setup (figure 20). The razor edge is placed such that the conjugate beam is
completely blocked. We place the razor edge in the Fourier plane. The imaging for the interference
fringes is done in the real plane on camera 1. To enable us to switch from the real to the Fourier
plane, we place a flip-mirror after the objective microscope. An image of the Fourier plane with the
razor edge is shown in figure 21.

Once the conjugate beam has been masked out, we return to imaging the exit face (the real plane).
We observe the shift in the interference pattern that was predicted from theory in figure 22.

10
EXPERIMENTAL RESULTS

After having corrected for degenerate four-wave mixing, we conducted the experiments for the following
parameters:

1. δ = 2.0 GHz

2. Tmeasured = 142.5◦ Celsius

3. Pincident = 200mW
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Figure 22: Integrated signal after masking the conjugate beam. We now observe the shift between the interference
patterns as predicted from theory. The x-axis represents the number of pixels on the camera. The y-axis in the
top panel has arbitrary units.

For these parameters, ∆n ≈ 1.2 × 10−6. After performing the experiment for these parameters, we
get the following results:

Figure 23: The experimental curve of the shift ∆S vs Λ performed with the parameters indicated above. We
observe the saturation of the shift for higher values of Λ.

Figure 23 shows the preliminary results for the measurement of the shift ∆S. This preliminary curve is
the first demonstration of superfluigity in light using an atomic vapor. The shift and Λ are calculated
on the central fringe.

Note on the results

The data was taken for 17 different values of Λ whereas in figure 23, we have presented the results
only for 10 values. A complete and thorough analysis has not been performed for the rest of the data.
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We are hopeful that with more data points with higher values of Λ, we will be able to demonstrate
unequivocally superfluidity in light.
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Part IV

Conclusion and Future Perspectives
We have demonstrated how the propagation of light in a non-linear medium can be used to simulate
superfluidity. The enormous interest of this approach is the simplicity of the experimental protocol.
However, we do need to take into account other non-linear effects such as absorption, Doppler broad-
ening, self-defocusing and degenerate four-wave mixing. One of the principal contributions of the work
presented here is a comprehensive understanding of all these non-linear phenomena, which will allow
further investigation to be carried out rapidly. Finally, The first experimental results obtained and
presented here are promising.

Some future perspectives:

1. Extending the pump-probe technique to study the flow of two superfluids: The pump-
probe technique presented here works with a weak probe beam. By increasing the intensity of
the probe beam (or by tuning some other parameter), we can use the probe beam as a superfluid
as well (by increasing the non-linearity). In such a case, we can study the flow of two superfluids,
one formed by the pump and the other by the probe. This provides a novel way for studying
the mixture of superfluids by using simpler optical systems.

2. Including potential terms: The analogy of the non-linear propagation of light and the Gross-
Pitaevskii equation studied here assumed the absence of potential terms. For optical systems
such as ours, we can induce a discontinuity in the local refractive index, which can serve as
an obstacle for the propagation of light. This is a particularly exciting experiment to perform
since this provides a direct confirmation of superfluid flow: the passage from normal fluid flow
to superfluid flow is characterized by the absence of the creation of turbulent vortices around
obstacles.

3. Increasing the non-linearity

(a) Reducing the length of the cell: BY reducing the length of the cell, we can decrease the ab-
sorption. This allows to access detunings closer to zero, leading to enhanced non-linearities.

(b) Electromagnetically Induced Transparency: This is a non-linear effect, which renders a
medium transparent within a narrow band of frequencies within an absorption line. We
can thus envisage to utilise EIT to make the medium transparent close to the peak of the
|∆n| curve.
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